Accessibility Tools

Job details

Research Associate in Predicting Antibiotic Resistance Evolution through Mechanistic Understanding of Genotype-to-Phenotype Mapping (Experimental Post)
Oxford Road, Manchester

Job reference: BM&H-15112

Location: Oxford Road, Manchester

Closing date (DD/MM/YYYY): 10/02/2020

Salary: £32,816 to £36,914 per annum (depending on experience)

Employment type: Fixed Term

Faculty/Organisation: Biology, Medicine & Health

Division: Evolution & Genomic Sciences

Hours per week: Full time

Contract Duration: starting as soon as possible until 30th October 2021

FBMH Introduction

The integrated structure of our Faculty enables a truly translational approach to biology, medicine and health - from pure discovery science through to clinical application and patient care. It also encourages collaborative working, enabling staff to deliver innovative, world-leading research that has a very real and positive impact on people’s lives, as well as high-quality education and training to over 11,000 undergraduate and postgraduate students.

Project description

One of the biggest outstanding problems in biology is how we can predict evolution. This project will use the tools and techniques of synthetic biology to study how the existing molecular mechanisms determine evolution. Understanding this relationship will allow us to predict the effects of mutations, and hence improve our ability to predict evolution.

This is particularly important when it comes to understanding and predicting the evolution of antibiotic resistance – one of the most important examples of how evolution affects human lives today, already causing over 25,000 deaths per year in the EU alone, in addition to dramatically extending hospital stays and increasing health care costs. In order to tackle this problem, we need to develop predictive approaches that will help us not only extend the usefulness of existing antibiotics, but also inform the development of longer-lasting novel drugs.    

The aim of this project is to improve our ability to predict multi-drug resistance evolution by understanding how the existing molecular mechanisms in the cell determine evolution. This project will involve constructing synthetic gene regulatory networks and experimentally probing them by introducing mutations into promoters and transcription factors that control the expression of multi-drug resistance pumps (AcrAB-TolC). This will allow us to understand how biophysical mechanisms determine the effects of mutations in transcription factors and promoters, and hence how they drive resistance evolution.

This postdoc will work together with a computational/theoretical postdoc, with the aim to produce one of the first predictive genotype-phenotype maps, and hence dramatically improve our ability to predict antibiotic resistance evolution from first principles.

The School is strongly committed to promoting equality and diversity, including the Athena SWAN charter for gender equality in higher education. The School holds a Silver Award which recognises their good practice in relation to gender; including flexible working arrangements, family-friendly policies, and support to allow staff achieve a good work-life balance. We particularly welcome applications from women for this post. All appointment will be made on merit. For further information, please visit:

Please note that we are unable to respond to enquiries, accept CVs or applications from Recruitment Agencies.

Enquiries about the vacancy, shortlisting and interviews:

Name: Dr. Mato Lagator

Email :

General enquiries:


Tel: 0161 275 4499

Technical support:


Tel: 0161 850 2004

This vacancy will close for applications at midnight on the closing date.

Please see the link below for the Further Particulars document which contains the person specification criteria.


The closing date for this job has now passed.